

 Linguistics Beyond And Within 7 (2021), 5-18

Spreading digital literacy via Minimal English.
The concept of ‘class’ in Swift programming language

Bartłomiej Biegajło
Siedlce University of Natural Sciences and Humanities, Poland

Abstract
The article aims at providing explications of the concept of a class, as it is implemented in the Swift programming
language offered by Apple. The explications are framed in Minimal English, which is based on the theory of Natural
Semantic Metalanguage. Detailed analysis of the Swift concept of class leads to four distinct core explications of
the programming construct in question and the related feature that Swift classes possess, namely the concept of
property. The article’s primary purpose is to offer a more smooth experience with programming, especially with
beginners in mind. Their initial exposure to programming might face several challenges due to the complicated
digital jargon of the documentation. Minimal English is implemented to ease the learning curve and promote
digital literacy as one of the most fundamental skills in today’s world.

Keywords: programming, Swift language, Natural Semantic Metalanguage, Minimal English

1. Introduction

If literacy today might be taken for granted, digital literacy still has a long way to be considered
a widespread skill available to everyone. In a well-researched book, How Was Life? Global Well-
being since 1820, which is a selection of commentaries on world literacy seen from several
alternative viewpoints and time frames, the authors try to pin down the actual gain which goes
together with language competence and state the following:

‘Literacy and education are crucial variables determining well-being, since they not only directly influence a
person’s intrinsic agency, but also indirectly affect well-being in material (e.g. per capita income and wages)
and immaterial terms (e.g. lower crime rates, higher life expectancy).’

van Leeuwen and van Leeuwen-Li (2014: 98)

It is particularly interesting to situate literacy in this combined context of gains and their
intrinsic opposition. While oscillating between the two poles, material gains vs immaterial
gains, it is tempting to conclude that the very skill of becoming literate, which is essentially yet
another area of knowledge one can take the effort to master, can lead to tangible results. Not
only do they provide change to the general well-being of the humankind but also have the

Bartłomiej Biegajło / Linguistics Beyond And Within 7 (2021), 5-18 6

potential to enrich the physical reality as they translate literacy into a better social status of an
individual. Investigating different planes of literacy in ancient Greece, Rosalind Thomas seems
to give special attention to the tangible results on which the promotion of literacy had to
necessarily concentrate: “for literacy to take root in a society, it has to have meaning, it needs to
have obvious and valuable uses, to be ‘relevant’ or empowering in some way” (Thomas 2009:
13). It would not be far-off to presume that, historically, literacy has been the type of skill that
allowed people to enjoy being ‘upwardly mobile’. Educators’ role in promoting the immediate
advantages that go together with acquiring the ability to read and write is beyond dispute. David
Olson, discussing the ‘literacy hypothesis’, which he understands as: “the bold claim that the
invention, adoption, and application of a new mode and technology of communication, namely
writing, altered the social practices of the society as well as the cognitive processes of those so
affected” (Olson 2009: 386), appears to reiterate the underlying role played by educators: “the
literacy hypothesis received a ringing endorsement from educators. It confirmed the long-held
belief that early education, centered on learning to read and write, was a universally valid goal”
(Olson 2009: 387).

Few would argue that the contemporary idea of literacy assumes a far broader meaning and
is hardly limited to acquiring an essential skill set allowing one to communicate with words.
Rijpma observes that “in respect to basic education, the world has progressed from low to near-
universal literacy attainment” (Rijpma 2014: 251), and, echoing van Leeuwen and van Leeuwen-
Li, declares that “education is important for well-being because improved access to information
is of intrinsic importance, but also because there are indirect effects through the impact of
education on other well-being indicators, such as income, health and political stability” (Rijpma
2014: 251). The contemporary world offers other stimuli for ‘upward mobility’. Becoming a
digitally literate participant of life creates many more opportunities for an individual, not only
from the perspective of sheer income capability but also from the viewpoint of challenging the
traditional modes of cognitive processes attached to reasoning and categorizing the digital data
described with the use of a natural language. Both the seasoned programmers and everyday
users of digital applications can make sense of the digital information that is open to
manipulation – it is part and parcel of their everyday digital experience. However, readability,
considered from the vantage point of a programmer, as opposed to a user, initiates an entirely
different set of cognitive processes. Wierzbicka remarks that “every language has lexically
encoded some scenarios involving both thoughts and feelings and serving as a reference point
for the identification of what the speakers of this language see as distinct kinds of feelings”
(Wierzbicka 1999: 15). The assumption is that as long as one agrees that there is a scenario for
conceptualizing and expressing feelings in natural languages, an equivalent scenario has to exist
for conceptualizing and expressing the specific type of information encoded in a meaningful
line of code to a programmer and a user. They, however, involve two distinct planes of
‘meaningfulness’ – the user enjoys the performance of an application, its usefulness together
with a visual appeal is what matters the most. At the same time, a programmer is most typically
concerned with the logic of an application, its natural ‘flow’ encoded in lines of code that he/she
conceptualizes before translating it into a user-friendly expression, i.e. the performance. The
scenario does not change. It is the reference point that is different. It can be said that a different
kind of focus is at play for the respective groups of participants of the digital literacy

Bartłomiej Biegajło / Linguistics Beyond And Within 7 (2021), 5-18 7

phenomenon. It is conditioned by different needs which the respective groups are interested in
pursuing. On the one hand, users seek functionality and performance that would meet their
individual needs. On the other hand, programmers pursue the aim of exploring diversified ways
in which the individual needs of users can be satisfied. To achieve this result, programmers are
conventionally expected to employ the tools available to them in the form of knowledge about
how to make one line of code communicate with other lines of code in a given digital
application. It is the scenario that programmers are required to comprehend, unlike in the case
of users who, very frequently, rely on their intuition while working with a digital application.

In one of her books, Wierzbicka is seen to be keen on addressing the ‘native speakers’
intuitions’ as both the first step and the final step for testing the hypotheses she puts forward:
“objective data, such as those that occur in contemporary linguistic corpora, cannot interpret
themselves, and to make sense of them one still needs to consult ones’ semantic intuitions”
(Wierzbicka 2010: 20), or elsewhere: “although the figures involved are small, these results are
consistent with native speakers’ intuitions, which […], allow us to formulate two
generalizations […]” (Wierzbicka 2010: 305). Apart from showing Wierzbicka’s approach to
her research agenda, these and many other passages appearing in the book can indeed shed
some light on the similar experience that digital literacy has to offer. As long as linguists are
customarily expected to study languages from the ‘under-the-hood’ perspective, native speakers
are often unable to explain why a language rule they apply intuitively and, more importantly,
correctly takes a specific form of a given kind. It seems that the phenomenon of digital literacy
can be considered from a similar context – programmers acquire knowledge about what occurs
‘under the hood’ once a digital application is initiated and can read and add new lines of code
to change the behaviour of a programme. In contrast, users accept the performance of an
application without having to understand the nuts and bolts or the technical configuration of
the application. What connects these two distinct types of digital literacies (programmers’ vs
users’) is their direct usefulness which translates into potential immediate gains, including
financial benefits. It is the same example of usefulness mentioned by Thomas in the context of
traditional literacy developed in ancient Greece – both offer true promise for a different, better
life, as the new skill is directly relevant to humankind’s condition.

The pressure on usefulness is also voiced by Tariq Rashid – an ardent advocate of computer
literacy: “many education curricula have been updated to ensure that children are digitally
literate, equipped to participate in a digital economy, able to develop their own technology
ideas, and be better-informed consumers and citizens” (Rashid 2019: 6). What Rashid means is
not only confined to transforming oneself into a proficient user of a plethora of digital
applications available on the market but rather being able to develop the crucial skills that would
significantly enhance the understanding of how this very specific digital market is arranged.
According to Rashid, “coding is considered by many to be as essential as reading and writing”
(Rashid 2019: 6), and one may be tempted to add one of the essential types of literacies that one
should contemplate mastering in the 21st century.

Apart from school curricula, there are nowadays several various private market initiatives
aimed at spreading knowledge about programming. Various coding boot camps (e.g. Coder
Academy, General Assembly, FireBootCamp, Le Wagon, to name just a handful of similar
enterprises in Australia alone) are currently becoming extremely attractive to programming

Bartłomiej Biegajło / Linguistics Beyond And Within 7 (2021), 5-18 8

enthusiasts, which testifies that the importance of digital literacy is growing at an
unprecedented rate. Boot camps are often successful in demystifying the complex idea of
programming and can be very effective in terms of future employability, they are often overly
expensive and, at many times, fail to be tailored to the cognitive needs of school children who
are less concerned with market competitiveness, and more enticed to pursue the creative aspect
of programming.

This market void has recently been filled with coding coursebooks aimed directly at
schoolchildren who only take their first steps in this area (Prottsman 2019; Vorderman et al.
2014; Woodcock 2016a, 2016b). They, however, rely heavily on visual content which
accompanies the explanations related mainly to the basic logic behind the projects which are
being discussed. At this stage of a learning path, the idea of entertaining a thought of covering
a set of more complex programming constructs, including, for example, Object-Oriented
Programming, is hardly justifiable. However, since illustrations of programming concepts,
which due to their very nature are highly artificial, take place with the use of a natural language
such as English, the prerequisite for these linguistic illustrations is that a language employed to
discuss these artificial concepts (i.e. the logic of programming as well as programming concepts)
has to be clear, unambiguous and comprehensible. Object-Oriented Programming, with which
the concept of class is commonly associated, is most often omitted in programming
coursebooks for children, and there is a good reason for it – it is very abstract and poses a
genuine challenge even to more experienced programmers. On the other hand, ‘classes’ provide
far broader functionality to a digital application and mastering the intricacies of ‘classes’ and
other Object-Oriented Programming concepts can significantly benefit future job prospects in
a digital market.

This paper assumes that Object-Oriented Programming can be explained using a natural
language, e.g. English, Chinese, Russian, etc., which, additionally, can be simple, transparent
and not off-putting to school children. The help can come from a reduced version of English,
Chinese, Russian, etc. The idea of language reductionism has been promoted by researchers
working within the framework of Natural Semantic Metalanguage, especially Anna Wierzbicka
and Cliff Goddard. Their relatively recent project is known under the name of Minimal English
(just as there can be Minimal Chinese, Minimal Russian, etc.), and the following study relies on
the theoretical tenets proposed by researchers involved in this particular project. The case study
is focused on one of the Object-Oriented Programming concepts, namely a ‘class’, as it is
implemented in Apple’s Swift programming language.

2. Minimal English revisited

Minimal English stems from the theory of Natural Semantic Metalanguage.1 NSM has received
wide recognition and has been discussed extensively throughout the past four decades (most
recent NSM and Minimal English studies include Goddard 2018a, 2018b; Goddard and
Wierzbicka 2014; Wierzbicka 2014, 2010). Minimal English is based on the assumption that
each natural language possesses a set of words and, consequently, a set of related concepts these

1 Hereafter referred to as NSM.

Bartłomiej Biegajło / Linguistics Beyond And Within 7 (2021), 5-18 9

words encapsulate, which have a universal or near-universal meaning. In one of her recent
books, Wierzbicka calls it “a neutral framework for comparing meanings across cultures”
(Wierzbicka 2014: 16) and, indeed, neutrality and translatability are probably the two keywords
that highlight the core part of hypothesis the researchers working within the framework of
Minimal English are seen to formulate. Goddard and Wierzbicka imply precisely this, stating
the following: “since Minimal English has its counterparts in Minimal Chinese, Minimal
Russian, Minimal Finnish, and so on, expressing oneself in Minimal English facilitates
translatability into one’s home language, if that is a language other than English” (Goddard and
Wierzbicka 2018: 23). Therefore, the underlying assumption behind the theory is the idea of
possible cross-translatability between any number of natural languages without a loss of
meaning which is typically associated with a transfer of meaning from one language to another.
According to the theory of NSM and its superset version, Minimal English, this can be achieved
with the help of any natural language (not limited to English only) suitably adapted to operate
on a tested number of more simple concepts, separated from the vast pool of vocabulary
available in a given natural language. Thus, the dream of faithful translation becomes a reality
as it can be supported with a viable theory. A theory based on extensive research has involved
continuous testing and the subsequent modifications that the theory underwent along the way
as new data kept emerging.

It is beyond the scope of this paper to address in detail the stages of the development of
NSM, especially the history behind the long and arduous task of establishing the final and
definite version of NSM. Of historical note is what Goddard shares in one of his publications:
“the Minimal English project has emerged from, and in a sense rests upon, the findings of a
program of linguistic research known as NSM (Natural Semantic Metalanguage)” (Goddard
2018c: 29). Additionally, Goddard highlights the fact that it is a highly systematic study of
meaning that “places words and meaning at the very centre of language study” (Goddard 2018c:
29). NSM is essentially a reduction-oriented analysis of meaning where a fixed set of 65 words
are regarded as universal concepts which, if translated to other natural languages, retain the
same meaning as the words they were translated from. A complete list of updated 65 semantic
primes, as they are sometimes alternatively referred to, can be conveniently accessed via the
official Natural Semantic Metalanguage website.

Biegajło notes that NSM “is simply a tool made of any natural language (the assumption
being that semantic primes connote the same meaning, regardless of the language they are
translated into) which is used to talk about less simple concepts found in those languages”
(Biegajło 2019a: 10). It convincingly recapitulates the underlying tenets of the framework. The
problem with NSM, however, lies elsewhere and was succinctly pointed out by another Polish
scholar, Roman Kalisz, who observed that: “the explications that rely solely on primes are vague,
which is the opposite of what they are meant to achieve” (Kalisz 1998: 56), where explications
are meant to be understood as the vital instrument in defining the meaning of a given concept.
Over the years, as more voluminous amounts of data became available to the NSM community,
the project evolved to embrace this setback. In order to secure the readability of the explications
and also in an attempt to address the intrinsic and natural cognitive expectations of the human
mind, which, most typically, strives to receive meaning which is unconvoluted and transparent,
the NSM researchers proposed what is called ‘semantic molecules’. According to Goddard, “the

Bartłomiej Biegajło / Linguistics Beyond And Within 7 (2021), 5-18 10

principle was clear enough: certain complex terms were needed as ‘concept-building’ elements”
(Goddard 2018c: 51), thus partly eradicating the frequently striking vagueness of the NSM
explications. Simultaneously, trying not to compromise the core assumptions of the NSM
theory, it was fundamental that in search of the actual list of semantic molecules, they have to
be able to be explicated into primes, “so there is no danger of circularity and no compromise of
the reductive principle” (Goddard 2018c: 50). In other words, semantic molecules are regarded
as near-universals, ‘near-primes’, although, technically, they do not belong to the selected
category of the 65 semantic primes which are part of NSM. However, they are considered
necessary, firstly, to write explications of more complex concepts and, secondly, to complement
the readability of the explications. A complete account of the developments involving testing
and selecting the final, tentative version of the list of semantic molecules can be found primarily
in Goddard (2018c).

Eventually, as Goddard admits, “the Minimal English project began to take shape in 2013”
(Goddard 2018c: 61), and the key assumption that goes together with the inception of Minimal
English is that “the NSM research community had accumulated enough knowledge and
experience about semantic variation and cross-translatability that it was now practical to adapt
NSM into a user-friendly tool for thinking and communicating outside the confines of Anglo
English” (Goddard 2018c: 61). Strictly speaking, it is turning the forty-year research within the
NSM framework into a more practical and less theoretical endeavour that would potentially
serve the needs of a wider audience, unlimited to scholars and the world of academia. A
complete set of lists grouped into selected thematic categories, including words and the related
concepts ‘allowed’ in Minimal English, can be found in Goddard and Wierzbicka (2018). This
paper rigorously follows the proposed vocabulary sets, and all the explications that follow are
based on a collection of words presented there.

3. The documentation of Object-Oriented Programming vs a natural language

According to the updated version of the Swift documentation provided by Apple, “structures
and classes are general-purpose, flexible constructs that become the building blocks of your
program’s code” (Apple 2020: 345, original emphasis). In essence, Swift’s structures and classes
share a standard set of features that, from the perspective of their core application, are intended
to represent one of the critical components of a computer program. It is the building blocks
into which structures and classes are transformed that make them essential components of an
application because when the code of a program is executed, whether it is a building block or a
single line of code, it triggers a series of specific instructions that an electronic device should
execute. Incorrect code or no code at all means that a device cannot make sense of the
instructions at hand or that it remains idle because there are no instructions to be interpreted
by a device interpreter. Common sense suggests that the internal arrangement of Swift
structures and classes must not only be understandable to an electronic device in order for them
to be fully usable but must also usually occupy a clearly specified place within a body of code if
they are intended to be constructs that are ‘general-purpose’ and ‘flexible’. Programmers often
refer to such a collection of rules as the syntax of a programming language, and Apple’s

Bartłomiej Biegajło / Linguistics Beyond And Within 7 (2021), 5-18 11

documentation is no different in acknowledging a fundamental significance to the syntax of
both structures and classes: “you define properties and methods to add functionality to your
structures and classes using the same syntax you use to define constants, variables, and
functions” (Apple 2020: 345). Biegajło notes that “any given app is essentially a collection of
data that can be stored in various types of containers whose contents can be freely manipulated”
(Biegajło 2019b: 246), and structures together with classes, but also properties, methods,
constants, variables and functions, to name just a few of the most common programming
concepts, are no exception in this respect. A syntax error or an inappropriate distribution of a
building block leads to an app crashing. Only extensive trial-and-error practice can lead an
aspiring developer to integrate various programming concepts into a unified and functioning
program. This is why novice programmers often fail at the beginning of their programming
experience and eventually often give up the challenge to learn the tricks of the trade too early.
It seems hardly helpful for them to read passages of the following kind:

‘Structures and classes in Swift have many things in common. Both can: define properties to store values,
define methods to provide functionality, define subscripts to provide access to their values using subscript
syntax, define initializers to set up their initial state, be extended to expand their functionality beyond a
default implementation, conform to protocols to provide standard functionality of a certain kind.’

Apple (2020: 346)

As long as an experienced programmer can easily translate the list of capabilities inherent in
structures and classes into a meaningful piece of valid information, beginners would most likely
be confused by the overwhelming jargon they are forced to make sense of.

The following example from Apple’s guide proves that this practice is not just occasional:

‘Classes have additional capabilities that structures don’t have: inheritance enables one class to inherit the
characteristics of another. Type casting enables you to check and interpret the type of a class instance at
runtime. Deinitializers enable an instance of a class to free up any resources it has assigned. Reference
counting allows more than one reference to a class instance.’

Apple (2020: 346)

Being precise and thus avoiding syntax errors when writing code in any programming
language is equally important as providing clear-cut definitions or explanations about what a
selected piece of code is set to do. These, however, seem to be two entirely different areas of
activity. If syntax comprehension is about language competence, documentation of the code’s
behaviour needs to have a certain didactic angle attached to it, which, most typically, rarely go
hand in hand, as evidenced by the two passages above. Donald Knuth, who, according to a
research profile available at the Stanford University website, is widely credited as the father of
the analysis of algorithms, noted the following as early as 1984:2

‘The past ten years have witnessed substantial improvements in programming methodology. This advance,
carried out under the banner of “structured programming”, has led to programs that are more reliable and
easier to comprehend; yet the results are not entirely satisfactory. My purpose in the present paper is to
propose another motto that may be appropriate for the next decade, as we attempt to make further progress

2 Under the title “Literate programming”, the paper appeared in 1984 and was later reprinted in the collection of

papers quoted in this article.

Bartłomiej Biegajło / Linguistics Beyond And Within 7 (2021), 5-18 12

in the state of the art. I believe that the time is ripe for significantly better documentation of programs, and
that we can best achieve this by considering programs to be works of literature. Hence, my title: “Literate
Programming”.’

Knuth (1992: 99)

In other words, Knuth implies that computer programs3 should be written in clean code that
would be readily interpretable by electronic devices as well as human beings. The
mathematician further elaborates on what literate programming points to: “the practitioner of
literate programming can be regarded as an essayist, whose main concern is with exposition
and excellence of style” (Knuth 1992: 99). Knuth made his statement perhaps slightly too heavily
laden in metaphor, nonetheless, it is an evocative illustration of the central assumption that is
being suggested, i.e. a code needs documentation. It is an absolute must for it to be well-written
and therefore readable to professionals and non-professionals alike.

Apple proudly boasts that Swift is “an industrial-quality programming language that’s as
expressive and enjoyable as a scripting language” (Apple 2020: 2), and it, indeed, belongs to a
small group of programming languages that offer comparably more friendly experience than
other common languages. Swift is devoid of many typical features that other languages contain,
which makes it significantly more readable to humans, but at the same time, it does not lose the
various functionality and can be employed to perform a number of complex tasks within a
computer program and beyond. Unfortunately, the complex digital jargon found in the
documentation seriously hinders potential programming enthusiasts from recognizing the full
scope of Swift’s applicability and, consequently, creates unnecessary barriers to understanding
the concepts at play ‘under the hood’ of computer programs. Natural Semantic Metalanguage,
combined with the functionality of Minimal English, can play a significant role in making
visible advances in bridging the gap between the code’s logic and the code’s documentation.
The ensuing discussion is primarily concerned with Swift’s concepts of a class, as an exemplary
concept of Object-Oriented Programming, and a directly related concept by which a class can
be identified, namely the concept of property.

4. Documentation written in Minimal English?

To understand the functionality of a class code in Swift, it is necessary to re-emphasize that all
programming activity involves traffic of data. Biegajło notes that “users can manipulate data –
change their contents, add new items, delete unnecessary parts, or remove them altogether, and,
essentially, store them in memory of a device” (Biegajło 2019a: 7) and, therefore, the opening
question in the context of Swift classes would be to provide the most general characteristics for
a class creation, with a clear implication that, once introduced into a code, it can be populated
with data. One critical remark to make at this point refers to what has already been said about
selected distinctive capabilities only Swift structures and classes are said to possess. No other
programming concept in Swift can accept what Apple identifies as properties and methods.
They are complex concepts. At least one of them would require further explanation, but
simultaneously, their introduction to the explication of the general characteristics of a Swift

3 The label, ‘computer program’, is understood here as an application launched on any electronic device.

Bartłomiej Biegajło / Linguistics Beyond And Within 7 (2021), 5-18 13

class would help determine the preconditioned essence of the concept of class, i.e. its unique
capacity to accept properties. Below is a proposed explication of the concept of a Swift class:

class (general characteristics):
a. something
b. someone can say many things about something else with this something
c. there can be/are (many) things (properties) inside this something

Component (a) (“something”) verifies the fact that a class is unlike any animate object, it cannot
make decisions, it is fundamentally a ‘general-purpose’, ‘flexible construct’ that is seen as a
specific type of object created to store various types of data, as is further elaborated by
component (b) (“someone can say many things about something else with this something”).
The third component of the explication intends to differentiate classes from other
programming constructs (e.g. variables, constants, functions, loops, etc.). It refers to the concept
of property as distinctive programming construct that only classes and structures share in
common. If the explication of a class is to be viable, the explication of the concept of property
has to accompany the one above and is provided in later sections of this paper. Technically, if a
programming concept offers data storage and, among many other things, it can accept
properties, it is safe to assume that a Swift programmer works either with a class or with a
structure.

Another essential feature that Swift classes are distinguished by is using a specific heading,
otherwise technically labelled a keyword that indicates we are dealing with a class. Apple
declares that “structures and classes have a similar definition syntax. You introduce structures
with the ‘struct’ keyword and classes with the ‘class’ keyword” (Apple 2020: 347), and the
intuitive denotation that the respective keywords carry greatly simplifies the overall experience
of working with a Swift code. Apple offers an exemplary blueprint for both programming
concepts:

struct SomeStructure {
 // structure definition goes here
}
class SomeClass {
 // class definition goes here
}

Apple (2020: 348)

Based on these remarks, below is a tentative version of the explication outlining the application
of the ‘class’ keyword:

the class keyword
a. before all other things in this thing, there is the word “class”
b. because of this, this thing is a class

The explication consists of only two succinct components. It is readable and easy to follow,
which is especially helpful for beginners. Component (a) simply postulates that to create a class,
all that is required is a specific Swift keyword, i.e. a ‘class’ keyword. Component (b) stipulates

Bartłomiej Biegajło / Linguistics Beyond And Within 7 (2021), 5-18 14

that once the keyword is introduced, one deals with a programming construct called a Swift
class.

Swift documentation also suggests that “whenever you define a new structure or class, you
define a new Swift type” (Apple 2020: 348) which means that data can be encapsulated in several
specific categories that are governed by a collection of syntactic rules. These and prior
explanations collectively can serve as the basis for the explication, which outlines the consistent
method of creating a specific type of Swift class.

Apple continues its commentary, pointing out that: “both [i.e. classes and structures] place
their entire definition within a pair of braces” (Apple 2020: 347) which allows for a definition
of the syntax of classes, as they are typically used in Swift:

defining a class type X
a. there is one word (X) after the word “class”
b. (it is before the “opening brace”) if someone writes this word (X), this someone makes a class of kind X
c. after this, someone can do something with this class/someone can say something about this class
d. it is like this:
e. something is on two sides of a class
f. on one side, it is something like this: “{“
g. it is called “an opening brace” of a class
h. after this, there can be many things (“properties”) that are part of this class
i. after these things (“properties”), it is something like this: “}”
j. it is called “a closing brace” of a class
k. after this, there cannot be things (“properties”) that are part of this class

The opening component introduces the notion which is a part of an imprinted functionality of
Swift classes and allows a programmer to create a specific instance of a class, which turns it into
a specific type of a class (“if someone writes this word (X), this someone makes a class of kind
X”). In most cases, the class type depends on the word that follows the ‘class’ keyword and can
be composed of any number of characters that do not have to imply any meaning whatsoever.
However, the advised practice widely shared among programmers is to give the type a specific,
recognizable name that would greatly ease the navigation through the code, especially if the
code requires (and, virtually, it almost always does) changes in the future. Thus, both
components (“(a) there is one word (X) after the word “class” ” and “(b) (it is before the
“opening brace”) if someone writes this word (X), this someone makes a class of kind X”) are
meant to satisfy this unwritten rule and implement the ‘word’ as a potential candidate to become
a type of class, instead of a random set of characters which, as has been suggested, is also
possible. The part “opening brace” does not belong either to the NSM set or to minimal
language. Therefore it has been included in the quotation marks. Their meaning and
significance for the composition of a Swift class need to be accounted for in the definition of a
class. Once the class type is established, the class can be incorporated into a code and used and,
more importantly, reused throughout the lifecycle of a programme (component (c)).

The braces mentioned in Apple’s documentation illustrate that Swift class’ scope is
determined by an opening brace and a closing brace, respectively. Anything that falls beyond
these confines is not part of the specific class in question; however, it can be part of another
class that is located before or after the location of a given class. The three components ((d)–(g))

Bartłomiej Biegajło / Linguistics Beyond And Within 7 (2021), 5-18 15

hint at this unique feature of Swift classes which programmers would read as the start of the
abstract scope of a class.

Component (d) (“it is like this:”) introduces the steps that need to be taken to create a class.
Component (e) (“something is on two sides of a class”) indicates that in order to create a class,
according to the rules set by Swift, we are required to include something before it and after it.
Components (f) (“on one side, it is something like this: “{“ ”) and (g) (“it is called ‘an opening
brace’ of a class”) demonstrate what is needed to start the scope of a class.

The four closing components ((h)–(k)) imply the end of the scope of a class. As classes can
accept a number of programming constructs, as long as they can hold and manipulate data, for
readability reasons, only one of them has been implemented into the explication, namely the
concept of property. The word ‘property’ is not part of Minimal English and has been included
in quotation marks. It is meant to indicate that a separate explication exists, namely that if
‘property’. The concept of property has to be included in the explication of a class because it
allows delineating the functionality of Swift classes from other constructs available in Swift.
Finally, component (k) (“after this, there cannot be things (“properties”) that are part of this
class”) shows that anything that falls beyond the class does not and cannot belong to the scope
of a given class.

Before moving on to the discussion of the explication of a Swift concept of class, first, an
explication of the concept of property has to considered. Property is seen here as one of the
distinct members of Swift classes. It is therefore unique to classes only (although, technically,
structures, mentioned earlier, copy the behaviour of classes in this respect; however, addressing
this dual functionality of Swift properties is beyond the scope of this paper). The uniqueness of
properties depends solely on whether they are inside a class or outside a class, as it critically
conditions both the naming conventions and their scope. Once inside a class, property is
accepted by a class as its member and is considered a fully-fledged example of a property. If,
however, it is moved outside the scope of a class, a Swift class ignores it entirely, but its
functionality is not lost, and the property turns either into a variable or a constant.4 Apple
explains that “a property declaration in a class is written the same way as a constant or variable
declaration, except that it is in the context of a class” (Apple 2020: 27).

The concept of variable and the concept of constant in Swift were analyzed with the
application of NSM by Biegajło (2019a). The study showed that Swift variables and constants
need to have two distinct explications to illustrate the core difference between them regardless
of their apparent similarity. Below are explications of the Swift concepts of variable and
constant:

variable (var) of kind X:
a. there can be something inside it
b. this something inside is one thing of kind X
c. this something inside cannot be two things of kind X
d. many things of kind X can be inside it at many different times
e. one thing at one time, another thing at another time.

Biegajło (2019a: 14)

4 For a detailed discussion of Swift variables and constants from the perspective of NSM, see Biegajło 2019a.

Bartłomiej Biegajło / Linguistics Beyond And Within 7 (2021), 5-18 16

constant (let) of kind X:
a. there can be something inside it
b. this something inside is one thing of kind X
c. this something inside cannot be two things of kind X
d. at all times this one thing is always the same thing.

Biegajło (2019a: 15)

As variables and constants are essentially “examples of unique labels, i.e. containers capable of
storing data” (Biegajło 2019a: 12), both opening components (a) (“there can be something
inside it”) in the explications above point explicitly to that interpretation – variables and
constants in Swift can hold data. Furthermore, both variables and constants “store precisely one
value at a given time in the lifespan of an application” (Biegajło 2019a: 13) and, as Apple implies,
“once you’ve declared a constant or variable of a certain type, you can’t declare it again with the
same name, or change it to store values of a different type” (Apple 2020: 59). Therefore,
components (b) (“this something inside is one thing of kind X”) and (c) (“this something inside
cannot be two things of kind X”) of the two explications contain a direct reference to the
mentioned characteristics of variables and constants – they can accept only one value at a time,
and, similarly to the behaviour shown by Swift classes, due to the in-built Swift functionality,
these values, have to necessarily be of specific ‘kind’, i.e. they have to be ascribed a certain type
(e.g. a string, a number, a Boolean value (i.e. a value which evaluates to true or false), etc.),
depending on the type of value that is inside a variable or a constant. Eventually, the two closing
components in the case of a variable (“(d) many things of kind X can be inside it at many times”
and “(e) one thing at one time, another thing at another time”), and one closing component in
the case of constant (“(d) at all times this one thing is always the same thing”) is where the two
concepts unmistakably differ. Variables in Swift are prone to change as long as they conform to
the initial type they were declared with (“many things of kind X”) and the Apple documentation
clearly suggests that stating: “you can change the value of an existing variable to another value
of a compatible type” (Apple 2020: 59). Once an application containing a variable with a value
inside is run, it can simply accept an infinite number of other values of the same type. This is
not the case with respect to constants in Swift, as is evidenced by a changed design of the
respective explication (“at all times this one thing is always the same thing”) because “a constant
is principally an example of an immutable container” (Biegajło 2019a: 15). One final comment
has to address the keywords used for introducing variables and constants into a Swift code –
they are ‘var’ and ‘let’ respectively and, unlike in the case of a ‘class’ keyword, they were
implemented into the very title of the explications, which goes on to show how flexible NSM
and Minimal English can be in an attempt to suit personal preferences.

In light of these remarks, we can now try to propose an explication of property in Swift:

property (var/let) of kind X:
a. it can be like this:
b. there can be something inside a class
c. this something can be a property
d. a property is like a variable inside a class
e. if it is not a variable, it is a constant

Bartłomiej Biegajło / Linguistics Beyond And Within 7 (2021), 5-18 17

Having adopted the blueprint used for the explications of the concept of variable and the
concept of constant, the explication of the concept of property assumes some prior exposure to
the dichotomy between variables and constants. The title of the explication of property suggests
two keywords available that allow creating properties that can share the typical characteristics
of variables and constants (‘var’ vs ‘let’, mutability vs immutability). Additionally, properties in
Swift, just as is the case with variables and constants, need to be of a specific type (“of kind X”).
Component (a) (“it can be like this:”) points to the fact that properties might appear in a class,
however, a class does not necessarily have to contain property to keep the characteristics of a
class. It can accept other programming constructs typical to Swift classes and allow for
significant variability in this respect. Component (b) (“there can be something inside a class”)
seems self-evident; a class can accept different data containers, one of which is, uniquely, a
property (component (c) “this something can be a property”). The closing components (d)–(e)
(“a property is like a variable inside a class” and “if it is not a variable, it is a constant”) make us
assume that properties copy the behaviour of variables and constants, i.e. one the one hand,
they can store different values, they are open to accepting other values, as long as that other
value is of a type compatible with the substituted value (behaviour characteristic to variables),
on the other hand, they accept only one value, of one specific type which cannot be manipulated
with after it was declared (behaviour characteristic to constants).

5. Concluding remarks

One of the underlying challenges that Object-Oriented Programming poses is that multiple
complex concepts are in constant dialogue, creating a sophisticated arrangement where digital
communication can take place. An echo of that is sent out by Apple stating that: “the additional
capabilities that classes support come at the cost of increased complexity” (Apple 2020: 347)
and, due to the constraints of this paper, only selected and most fundamental issues related to
Swift classes are discussed. They include explications of general characteristics of Swift classes,
the ‘class’ keyword, types of classes and how to create them, the syntax of classes, and the
concept of property as one of the distinct features of Swift classes. The proposed explications
are by no means fixed or final and are open to further amendments; however, they are a perfect
starting point to pursue the project of rewriting selected programming documentation in
Minimal English with the view of transforming it into more user-friendly explanations,
especially with school children in mind. As has been mentioned in the opening paragraphs of
this paper, classes share some of their core functionality with another Swift construct, namely
structures, and to arrive at a comprehensive account of the usability of classes, structures would
also have to be addressed with greater detail in the later stages of this project. To embrace digital
literacy at a satisfactory level, this project could potentially develop into a self-contained
reference book which would be focused on discussing selected programming concepts in a
fashion that would emulate Anna Wierzbicka’s retold Biblical Gospels, rewritten in Minimal
Polish and Minimal English (Wierzbicka 2017, 2019). The obvious strength behind
Wierzbicka’s project is that the Gospels are not recounted exclusively in explications, but are a
combination of explications and a narrative form that different minimal versions of natural
languages can support.

Bartłomiej Biegajło / Linguistics Beyond And Within 7 (2021), 5-18 18

References

Apple. 2020. The Swift programming language (Swift 5.3). Apple Inc.
Biegajło, B. 2019a. Explaining IT programming concepts using NSM explications: The case of ‘variable ’and

‘constant’. Linguistics Beyond and Within 5: 7–16.
Biegajło, B. 2019b. Harnessing the concept of an array in Swift programming language. Abstract concepts vs.

Natural Semantic Metalanguage. Language and Literary Studies of Warsaw 9: 239–251.
Goddard, C. 2018a. Minimal English for a global world. Improved communication using fewer words. Cham:

Palgrave Macmillan.
Goddard, C. 2018b. Ten lectures on Natural Semantic Metalanguage. Exploring language, thought and culture using

simple, translatable words. Leiden: Brill.
Goddard, C. 2018c. Minimal English: The science behind it. In C. Goddard (ed.), Minimal English for a global

world. Improved communication using fewer words, 29–70. Cham: Palgrave Macmillan.
Goddard, C., and A. Wierzbicka. 2014. Words and meanings. Lexical semantics across domains, languages, and

cultures. Oxford: Oxford University Press.
Goddard, C., and A. Wierzbicka. 2018. Minimal English and how it can add to global English. In C. Goddard (ed.),

Minimal English for a global world. Improved communication using fewer words, 5–27. Cham: Palgrave
Macmillan.

Kalisz, R. 1998. Is it possible to operate with primitives in every explication?. In B. Lewandowska-Tomaszczyk
(ed.), Lexical semantics, cognition and philosophy, 55–63. Łódź: Łódź University Press.

Knuth, D. 1992. Literate programming. Stanford, California: Center for the Study of Language and Information.
Olson, R. D. 2009. Why literacy matters, then and now. In A. W. Johnston and H. H. Parker (eds.), Ancient

literacies. The culture of reading in Greece and Rome, 385–403. Oxford: Oxford University Press.
Prottsman, K. 2019. How to be a coder. London: Penguin Random House.
Rashid, T. 2019. Creative coding for kids. Scotts Valley, California: Create Space Independent Publishing Platform.
Rijpma, A. 2014. A composite view of well-being since 1820. In J. L. van Zanden, J. Baten, and M. M. d’Ercole

(eds.), How was life? Global well-being since 1820, 249–269. OECD Publishing.
Thomas, R. 2009. Writing, reading, public and private ‘literacies’. Functional literacy and democratic literacy in

Greece. In A. W. Johnston and H. H. Parker (eds.), Ancient literacies. The culture of reading in Greece and
Rome, 13–45. Oxford: Oxford University Press.

van Leeuwen, B. and J. van Leeuwen-Li. 2014. Education since 1820. In J. L. van Zanden, J. Baten, and M. M.
d’Ercole (eds.), How Was Life? Global Well-being since 1820, 87–100. OECD Publishing.

Vorderman, C., J. Woodcock, and S. McManus. 2014. Help your kids with computer coding. A unique step-by-step
visual guide, from binary code to building games. London: Penguin Random House.

Wierzbicka, A. 1999. Emotions across languages and cultures: Diversity and universals. Cambridge: Cambridge
University Press.

Wierzbicka, A. 2010. Experience, evidence, and sense. The hidden cultural legacy of English. Oxford: Oxford
University Press.

Wierzbicka, A. 2014. Imprisoned in English. The hazards of English as a default language. Oxford: Oxford
University Press.

Wierzbicka, A. 2017. W co wierzą chrześcijanie? Opowieść o Bogu i o ludziach. Kraków: Wydawnictwo Znak.
Wierzbicka, A. 2019. What Christians believe: The story of God and people in Minimal English. Oxford: Oxford

University Press.
Woodcock, J. 2016a. Coding games in Scratch. A step-by-step visual guide to building your own computer games.

London: Penguin Random House.
Woodcock, J. 2016b. Coding projects in Scratch. A step-by-step visual guide to coding your own animations, games,

simulations, and more! London: Penguin Random House.

[do not delete]

