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Abstract 

The present study aims at shedding further light on how AGREEMENT GROUPS (AG) processing (e.g. 
Drienkó 2020a) and LARGEST CHUNK (LCh) segmentation (e.g. Drienkó 2018a) can be combined to 
model the emergence of language. The AG model is based on groups of similar utterances which 
enable combinatorial mapping of novel utterances. LCh segmentation is concerned with cognitive text 
segmentation, i.e. with detecting word boundaries in a sequence of linguistic symbols. Previous cross-
linguistic research on French, English, and Hungarian texts (Drienkó 2020b) demonstrated that LCh 
segmentation is not efficient when words are the basic segmentation units and utterances are the target 
sequences. However, almost all utterance boundaries were identified at the expense of inserting 
relatively many extra boundaries. These extra boundaries delineated reoccurring fragments for 
building longer utterances. The present analysis of English mother-child data confirms previous 
findings that in spite of the relatively low efficiency of word-based LCh segmentation with respect to 
utterance boundaries, LCh segments can still prove to be useful word combinations for AG processing. 
Furthermore, compared with the previous experiments, the data suggest higher boundary precision 
(42%) and higher coverage (85%). These findings, on the one hand, support the claim that LCh 
fragments can be useful in linguistic processing (with AGs), and, on the other hand, are in line with a 
view that mother-child language facilitates processing more than other speech contexts. 

Keywords: Cognitive computer modelling; segmentation; syntactic processing; language acquisition 

1. Introduction 

The AG language processing model, initially proposed by Drienkó (2014), adopts a 
distributional approach, relying on word distribution to group utterances. Harris (1951, 1952) 
pioneered distributional methods in linguistics, considering contexts for linguistic items. Kiss 

 
LingBaW. Linguistics Beyond and Within, e-ISSN: 2450-5188 
DOI: 10.31743/lingbaw.18008 
© The Author(s) 2024. This is an open access article licensed 
under a Creative Commons Attribution 4.0 International License. 

https://creativecommons.org/licenses/by/4.0/


László Drienkó   /   LingBaW. Linguistics Beyond and Within 10 (2024), 49–63 50 
 

(1973) introduced a word categorisation model using cluster analysis, expanded by Redington 
et al. (1998). Finch et al. (1995) adopted a similar method to assign categories to word 
sequences, i.e. to phrases. Mintz (2003) formalized context using frequent frames, i.e. 
preceding and succeeding words, while Weisleder and Waxman (2010) explored, besides 
Mintz’s mid-frames, the usefulness of end-frames for categorisation. Additionally, St. Clair et 
al. (2010) argued for flexible frames. Cameron-Faulkner et al. (2003) found framing effects in 
language acquisition, which findings were confirmed by cross-linguistic results in e.g. Stoll et 
al. (2009). AGs can be viewed as combinations of such framing contexts. Wang and Mintz 
(2010) claim that grammatical relations are more consistent within frequent frames than in 
bigrams, which accords well with our view that AGs represent linguistic relations. Bannard 
and Matthews (2008) suggest that children tend to store word sequences in memory during 
language acquisition. The organisation of such stored utterances into groups based on 
similarity is a key concern of the AG model.  

Early work on speech segmentation is exemplified by Harris (1955) where statistical cues 
were used to predict linguistic unit boundaries. Saffran et al. (1996) demonstrated statistical 
information availability in language acquisition. Various other cues like syllable distribution 
and prosody also affect speech segmentation strategies (Mattys et al. 2005; Cutler et al. 1987; 
Cutler et al. 1988; Thiessen et al. 2007; Bagou et al. 2002). The LCh method, as proposed in 
Drienkó (2016a), offers a quantitative approach based solely on linguistic structure, taking no 
advantage of further cues like stress or metrical features. 

The structure of the current study is organized as follows. Sections 1.1 and 1.2 offer a brief 
introduction to agreement groups and LCh segmentation. Section 1.3 addresses the issue of 
combining word-based LCh segmentation with AG processing, setting the context for our 
analysis consisting of three computer experiments. Section 2 presents the empirical results 
obtained from the experiments. Section 3 discusses the significance of the findings in relation 
to linguistic modelling. Section 4 provides concluding remarks summarizing the key points of 
the study. 

1.1. Agreement Groups 

The concept of agreement groups and agreement groups coverage has been explored in various 
studies as a distributional approach to modelling linguistic processing. Drienkó (2014) 
demonstrated that agreement groups, which are groups of 2-5 word long utterances differing 
from a base utterance by only one word, can account for a certain percentage of novel 
utterances in English mother-child speech. These AGs may facilitate categorization 
(lexical/syntactic, semantic) and could potentially serve as the basis for actual agreement 
relations. Similar findings were reported for Hungarian and Spanish in Drienkó (2013a). To 
handle longer utterances, the notion of coverage was introduced in Drienkó (2013b, 2015, 
2016b). The coverage apparatus aims to identify 2-5-word long fragments within an input 
utterance and map them onto agreement groups. In the case of English mother-child 
utterances from the Anne files of the Manchester corpus (Theakston et al. 2001) in the 
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CHILDES database (MacWhinney 2000), the author found average coverage values of 78% 
and 83% for the continuous and discontinuous cases, respectively. 

The central objective of the AG approach is to arrange the utterances of a linguistic 
corpus into groups differing in only one word from a given utterance. These AGs serve as the 
basic processing units of the model for mapping utterances. Novel utterances are mapped 
onto AGs of familiar utterances, viz. the utterances of a training corpus. An utterance can be 
mapped onto an AG if it can be obtained by choosing words from the subsequent columns of 
a corresponding hypothetical table for the AG, where each column represents an utterance 
position and contains all the words of the AG occurring in the corresponding position. For 
example, the agreement group AG1 in (1) licenses the novel utterances in (2), i.e. each 
utterance in (2) can be mapped onto AG1. For a given AG, the novelty of mappable utterances 
is graded in proportion to in how many words an utterance in question differs from the words 
of the ‘base’ utterance of the AG. Utterance a boy laughs, e.g. differs from the base utterance 
the girl talks in all the three positions – cf. the boldface words – while the other three 
utterances, a girl laughs, the boy laughs and a boy talks, involve only two positional differences. 
Note that novelty for a particular AG begins with two positional differences since the 
utterances within an AG already involve difference in one position from the base utterance. 

  AG1 (1)
 the girl talks 
the girl laughs 
a girl talks 
the boy talks 

  a girl laughs (2)
the boy laughs 
a boy talks 
a boy laughs 

Besides the immediate AG-mapping level, the AG model assumes a coverage mechanism that 
processes utterances as combinations of shorter utterances. The processing task of the 
coverage mechanism consists in trying to establish a COVERAGE STRUCTURE for an utterance by 
identifying 2-5-word long fragments in it that can be directly mapped onto AGs. Suppose we 
want to process utterance a little boy laughs and our store of AGs, besides AG1 in (1), also 
includes AG2 as shown in (3). We can obtain a corresponding coverage structure by 
identifying fragments a boy laughs and little boy which fragments can be mapped onto groups 
AG1 and AG2, respectively. Cf. Table 1. Note that the AG model allows for discontinuous 
mapping. Fragment a boy laughs is discontinuous in utterance a little boy laughs owing to the 
inserted word little.  

  AG2 (3)
big girl 
little girl 
big boy 
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Table 1: Coverage structure for ‘a little boy laughs’ 

a little boy laughs   
a  boy laughs  AG1 (discontinuous fragment) 

 little boy   AG2 

We associate a 100% coverage value with coverage structures where each utterance position is 
covered, as in Table 1. However, there might be utterance positions that cannot be covered by 
AG-compatible fragments. As the coverage structure in Table 2 illustrates, the two groups 
AG1 and AG2 in our running example do not suffice to completely cover utterance a little boy 
often laughs due to the fact that no AG can be found for mapping any utterance fragment 
containing the word often. Thus, the coverage value for a little boy often laughs is 
4/5 = .8 (80%) since four utterance positions of five are covered. 

Table 2: Coverage structure for ‘a little boy often laughs’ 

a little boy often laughs  
a  boy  laughs AG1 (discontinuous fragment) 

 little boy   AG2 

The AG model operates on two basic levels of linguistic processing. The first level involves 
direct mappings onto AGs for handling holophrases, shorter utterances, or formulaic 
expressions. The second level requires more computational effort as it involves finding legal 
(AG-compatible) fragments (Level 1 operation) and then selecting an optimal combination of 
fragments to ensure grammaticality. This duality is reflected in the coverage structures of 
utterances. Drienkó (2020a) discusses additional dualistic properties of the AG framework 
and highlights its relevance to research on cognitive linguistic processing. This includes topics 
such as generalization, categorization, a semantic/syntactic interpretation of the less-is-more 
principle in Newport (1990), its relationship to U-shaped learning (Strauss 1982) and 
“vocabulary spurt” (e.g., Ganger & Brent 2004), parallels with the dual-process model of Van 
Lancker Sidtis (2009), lateralization of formulaic and analytical speech (e.g., Sidtis et al. 2018), 
neurolinguistic processing (Bahlmann et al. 2006), and the processing of complex linguistic 
structures such as long-distance dependencies, crossing dependencies, or embeddings (also 
discussed in Drienkó 2016b). 

1.2. Largest-Chunk segmentation 

The Largest Chunk (LCh) segmentation algorithm as proposed in Drienkó (2016a, 2018) for 
inferring utterance fragment boundaries looks for locally maximal chunks that occur at least 
twice in a sequence of linguistic units, fundamentally, letters of the alphabet. Some elementary 
segmentation examples are listed as (4i)-(4iii). The input sequence (4i), abcabc, e.g. is 
segmented as abc abc, since the largest chunk that occurs twice is abc. In (4ii) there is only one 
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c, so the ab chunks are locally maximal. Example (4iii) illustrates how some nested dependency 
structures can be captured by LCh segmentation. 

  i abcabc    abc   abc (4)
ii abcab     ab   c   ab 
iii abcdefefcdab   ab  cd  ef  ef  cd  ab 

The segmentation results are interpreted in terms of four precision metrics: INFERENCE 

PRECISION (IP), ALIGNMENT PRECISION (AP), REDUNDANCY (R), and BOUNDARY VARIABILITY 

(BV). The definitions are given under (5). Note the interdependence of the precision values: 
IP × R = AP, since (cib/aib ) × (aib/acb) = cib/acb. 

  Inference Precision = cib/aib (5)
 (correctly inferred boundaries/all inferred boundaries) 

Redundancy = aib/acb 
 (all inferred boundaries/all correct boundaries) 

 Alignment Precision = cib/acb 
 (correctly inferred boundaries/all correct boundaries) 

Boundary variability = Σ∆fi/aib 
 (the average distance, in characters, of an inferred boundary from the nearest correct boundary) 

For a simplistic illustration of how Inference Precision is obtained consider the toy corpus of 
two utterances {toby is, toby in}. When the basic segmentation units are the letters of the text, 
the LCh algorithm outputs the segments tobyi, s, tobyi, and n as in (6). Since 2 boundaries are 
correct of all the 4 inferred boundaries – viz. the boundaries after s and n – Inference 
Precision is 2/4 = 0.5. Recall that IP is defined as the proportion of correctly inferred 
boundaries, cib, to all inferred boundaries aib. Cf. (5). 

  tobyistobyin   tobyi s tobyi n (6)

When segmentation is based on syllables, we anticipate higher precision values since no 
erroneous syllable-internal boundaries can be inferred. The LCh segments for our toy corpus 
{toby is, toby in} would be to-by-, is-, to-by-, and in-, cf. (7). Since all the four inferred 
boundaries are correct, IP = 4/4 = 100%. 

  to-by-is-to-by-in-      to-by-   is-   to-by-   in-  (7)

The LCh algorithm, as described in Drienkó (2017), was used to segment utterances in 
English, Hungarian, Mandarin, and Spanish. The algorithm achieved an IP range of 53% - 
66% when segments were based on letters. However, when syllables were used as the basic 
units of segmentation, the IP values significantly improved. In Drienkó (2018a) the IP range 
for syllables was found to be 77% - 95%, with an average of 86%. This suggests that using 
syllables as units of segmentation leads to higher precision in boundary inference. 

The LCh segmentation strategy aligns with Peters’ (1983) approach to language 
acquisition, where learners extract large chunks from the speech stream and form the 
‘ultimate’ units of language by segmenting and fusing relevant chunks. The results also 
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support a less-is-more interpretation (Newport 1990), indicating that less detail in utterance 
structure – syllables versus letters – may facilitate higher precision in boundary inference. 

The LCh strategy allows for direct quantitative results based solely on the linguistic 
structure of the text, without relying on additional cues such as stress or metrical features. 
However, it is worth noting that LCh segmentation may be compatible with other cognitive 
strategies and can be aided by cognitive cues. In fact, Drienkó (2018b) reported that utterance 
boundary information enhances LCh segmentation, which aligns with research on infant 
word segmentation and, in particular, with the Edge Hypothesis of Seidl et al. (2006) 
suggesting that extraction of target words is facilitated by utterance boundaries. 

1.3. Word-based largest chunks for Agreement Groups processing 

The AG model assumes that language learners have access to clearly defined utterance 
boundaries in their training corpus. However, this assumption does not align well with real-
life language acquisition, where learners are exposed to continuous speech without explicit 
boundary markers. Previous research suggests that word boundaries can be detected with high 
precision using the LCh strategy, particularly in the case of syllable-based segmentation 
(Drienkó 2017, 2018a). If we assume that language learners have a tool for detecting word 
boundaries, such as syllable-based LCh segmentation, it may be valuable to explore how this 
segmentation strategy can be useful when considering the word as the basic unit of text. It is 
possible that the strategy could identify recurring word combinations that correspond to 
phrases and utterances. These "phrases" (or speech fragments) could then be input to the 
group formation algorithm of the AG model. The resulting set of AGs could be used for 
syntactic processing of new utterances, conditioning a cognitive computer model for the 
emergence of language that relies on LCh segmentation, AG formation, and their associated 
mapping mechanisms.  

Some cross-linguistic results were reported in Drienkó (2020b) testing the LCh+AG 
(“syntax out of a stream of words”) approach against the short novel Le Petit Prince (The Little 
Prince) by Antoine de Saint-Exupéry in three languages: French, English, and Hungarian. It 
was concluded that LCh segmentation is not very efficient when words are the basic 
segmentation units and utterances are the target sequences. However, almost all utterance 
boundaries were identified at the expense of inserting relatively many extra boundaries. These 
extra boundaries delimited reoccurring fragments that could be used for producing coverage 
structures for longer utterances. The present study explores a different register, mother-child 
language, in order to see how linguistic context affects the insights that the combination of 
largest-chunking and AG formation yields. 

In the experiments, the input corpus of utterances was transformed into a sequence of words 
by removing utterance boundaries, and the resulting word sequence was segmented using the LCh 
segmentation algorithm. The word combinations (largest chunks) obtained in the first stage were 
then used to generate AGs. Finally, these AGs were used to map utterances from a novel section 
(test set) of the original corpus, allowing for testing of coverage. It is important to note that, for 
computational reasons, utterance boundaries were included in the test set, which means that our 
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results may underestimate the model’s coverage potential since word combinations spanning 
utterance boundaries were not considered. Additionally, to gain a more detailed understanding of 
the processing mechanisms, the corpus was divided into three parts, and three separate 
experiments were conducted. The results of these experiments are presented in Section 2. 

2. The experiments 

In our experiments we used the Anne files of the Manchester corpus (Theakston et al. 2001) in 
the CHILDES database (MacWhinney 2000). The Anne section of the corpus contains 68 files, 
1a through 34b, each file consisting of the tapescript of a 30-minute mother-child session. The 
dataset was divided into three subsets – files 1a-11b, 12a-22b, 23a-32b – and coverage was 
measured separately for each. To obtain utterance fragments, we reduced the data subsets 
even further. We regarded each 60-minute mother-child session as a short text, i.e. a sequence 
of words without utterance boundaries, and segmented them via the LCh segmentation 
algorithm. However, for a given coverage experiment, segments from all its 60-minute 
sessions were considered. For instance, in Experiment 1 the first collection of segments came 
from files 1a and 1b, the second collection from 2a and 2b, etc., and the segments of all the 
eleven collections were used to form AGs. Coverage was then tested on file 12a, corresponding 
with the next 30-minute mother-child session. In Experiment 2 the first collection of segments 
came from files 12a and 12b, the last collection from 22a and 22b, and coverage was tested on 
file 23a. Finally, in Experiment 3, segments were obtained from sessions 23 through 32 and 
coverage was measured on file 33a. 

2.1. Experiment 1 

In Experiment 1, after merging a and b sessions, we obtained LCh segments from files 1 through 
11. Table 3 shows the precision metrics for the segmentation procedure. Recall that Inference 
Precision (IP) represents the proportion of correctly inferred boundaries (cib) to all inferred 
boundaries (aib), i.e. IP = cib/aib, Redundancy (R) is computed as the proportion of all the 
inferred boundaries to all the correct (original) boundaries (acb), i.e. R = aib/acb, Alignment 
Precision (AP) is specified as the proportion of correctly inferred boundaries to all the original 
boundaries, i.e. AP = cib/acb, and Boundary Variability (BV) designates the average distance, in 
characters, of an inferred boundary from the nearest correct boundary. Cf. (5). Here we 
specifically include BVwo for measuring the average of the distance from the nearest correct 
boundary in words, since the basic textual unit in the experiments of this study is the word. 

Table 3: LCh segmentation precision results for Experiment 1 

 1 2 3 4 5 6 7 8 9 10 11 Avr. 
IP 0.472 0.496 0.496 0.487 0.474 0.475 0.430 0.435 0.460 0.389 0.463 0.461 
R 1.623 1.484 1.482 1.437 1.615 1.632 1.783 1.770 1.577 1.951 1.593 1.538 
AP 0.766 0.736 0.735 0.700 0.766 0.775 0.767 0.771 0.726 0.759 0.738 0.749 
BV 4.863 4.417 4.407 4.652 4.608 4.832 5.162 5.430 5.234 6.027 4.747 4.943 
BVwo 1.045 0.922 0.925 0.979 0.966 1.006 1.069 1.121 1.083 1.266 0.978 1.011 
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Overall, we obtained 33179 segment tokens from the 11 sessions, 16519 of which were 
multiword segments, i.e. segments containing at least two words. The distribution of 
multiword segments with respect to their lengths measured in words is sketched in Figure 1. 

 
Figure 1: The distribution of multiword LCh segments from files 1-11 with respect to their lengths 

Of all the 16519 multiword utterance fragments we selected those which contained at most 
five words, and these were used for the formation of AGs. The distribution of the 5905 two-to-
five-word-long segment types in terms of their lengths measured in words is given as Figure 2. 
The number of words (types) that occurred in the 5905 segments was 953. 

 
Figure 2: The distribution of two-to-five-word-long LCh segment types from files 1-11 in terms of 
segment length measured in words 

Since each utterance fragment had its own group, there were 5905 AGs. The utterances in 
session 12a were used for testing the coverage potential of this 5905-group AG system. There 
were 565 utterance types in file 12a, 43 of which being one-word utterances. We applied the 
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coverage apparatus to the 522 multiword utterances in 12a. Via dividing the sum of the coverage 
values for the individual utterances in the test file by the number of utterances we obtain average 
coverage. The average coverage value for Experiment 1 was 457.3/522 = 87.6%. If we assume, in 
accordance with our word-based LCh segmentation procedure, that all words are “known” to 
the AG system, coverage becomes somewhat higher since one-word utterances in the test set 
can trivially be covered by themselves. Thus, by also taking the 43 one-word utterances into 
consideration, we get (457.3 + 43 = 500.3)/(522 + 43 = 565) = 88.5% as average coverage. 

2.2. Experiment 2 

In Experiment 2 the first collection of segments came from files 12a and 12b, the last 
collection from 22a and 22b, and coverage was tested on file 23a. After merging a and b 
sessions, we obtained LCh segments from files 12 through 22. Table 4 shows the precision 
metrics for the segmentation procedure. Recall that IP = cib/aib, R = aib/acb, AP = cib/acb, 
and BV designates the average distance, in characters, of an inferred boundary from the 
nearest correct boundary. BVwo gives the average distance measured in words. 

Table 4: LCh segmentation precision results for Experiment 2 

 12 13 14 15 16 17 18 19 20 21 22 Avr. 
IP 0.417 0.424 0.395 0.412 0.387 0.417 0.407 0.442 0.429 0.438 0.425 0.417 
R 1.835 1.745 1.955 1.878 1.983 1.888 1.922 1.724 1.718 1.751 1.75 1.747 
AP 0.764 0.741 0.773 0.773 0.767 0.787 0.782 0.762 0.738 0.767 0.743 0.763 
BV 5.580 5.499 6.473 5.475 6.058 5.775 5.764 5.316 5.026 5.229 5.184 5.580 
BVwo 1.152 1.137 1.342 1.137 1.246 1.177 1.164 1.097 1.04 1.068 1.068 1.11 

Overall, we obtained 35619 segment tokens from the 11 sessions, 17864 of which were 
multiword segments, i.e. segments containing at least two words. The distribution of 
multiword segments is sketched in Figure 3. 

 
Figure 3: The distribution of multiword LCh segments from files 12-22 with respect to their lengths 
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Of all the 17864 multiword utterance fragments we selected those which contained at most 
five words, and these were used for the formation of AGs. The distribution of the 6197 two-to-
five-word-long segment types is given as Figure 4. The number of words (types) that occurred 
in the 6197 segments was 1038. 

 
Figure 4: The distribution of two-to-five-word-long LCh segment types from files 12-22 in terms of 
segment length measured in words 

The utterances in session 23a were used for testing the non-discontinuous coverage potential of 
the 6197 AGs. There were 526 utterance types in file 23a, 51 of which were one-word utterances. 
We applied the coverage apparatus to the 475-multiword subset of 23a. The average coverage 
value for Experiment 2 was 407.8/475 = 85.8%. If we take the 51 one-word utterances into 
consideration average coverage becomes (407.8 + 51 = 458.8)/(475 + 51 = 526) = 87.2%. 

2.3. Experiment 3 

In Experiment 3 we obtained LCh segments from files 23 through 32, after merging a and b 
sessions. Coverage was tested on file 33a. Table 5 shows the precision metrics for the 
segmentation procedure. 

Table 5: LCh segmentation precision results for Experiment 3 

 23 24 25 26 27 28 29 30 31 32 Avr. 
IP 0.38 0.367 0.392 0.399 0.389 0.392 0.369 0.387 0.377 0.376 0.383 
R 1.997 2.124 1.928 1.867 1.909 2.004 2.069 2.015 2.102 2.023 2.01 
AP 0.759 0.780 0.755 0.745 0.742 0.785 0.763 0.781 0.793 0.760 0.759 
BV 6.183 6.56 5.772 5.768 5.982 6.106 6.322 6.053 6.453 6.404 6.293 
BVwo 1.290 1.341 1.195 1.212 1.242 1.263 1.307 1.252 1.329 1.335 1.312 

 
We obtained 34649 segment tokens from the 10 sessions, 16761 of which contained more than 
one word. The distribution of multiword segments is sketched in Figure 5. 
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Figure 5: The distribution of multiword LCh segments from files 23-32 with respect to their lengths 

Of all the 16761 multiword utterance fragments we selected those which contained at most 
five words, and these were used for the formation of AGs. The distribution of the 5805 two-to-
five-word-long segment types is given as Figure 6. The number of words (types) that occurred 
in the 5805 segments was 1065. 

 
Figure 6: The distribution of two-to-five-word-long LCh segment types from files 23-32 in terms of 
segment length measured in words 

The utterances in session 33a were used for testing the non-discontinuous coverage potential 
of the 5805 AGs. There were 515 utterance types in file 33a, 49 of which were one-word 
utterances. We applied the coverage apparatus to the 466-multiword subset of 33a. The 
average coverage value for Experiment 3 was 375.15/466 = 80.5%. If we take the 49 one-word 
utterances into consideration average coverage becomes 
(375.15 + 49 = 424.15)/(466 + 49 = 515) = 82.4%. Table 6 presents the average results from all 
the three experiments. 

 



László Drienkó   /   LingBaW. Linguistics Beyond and Within 10 (2024), 49–63 60 
 

Table 6: Overall average segmentation precision and coverage results 

 
Datasets 

Average 1-11 12-22 23-32 

Avr. IP 0.461 0.417 0.383 0.420 

Avr. R 1.538 1.747 2.01 1.765 

Avr. AP 0.749 0.763 0.759 0.757 

Avr. BV 4.943 5.580 6.293 5.605 

Avr. BVwo 1.011 1.11 1.312 1.144 

Average coverage 0.876 0.858 0.805 0.846 

3. Discussion 

The Inference Precision values show that the proportion of correctly inferred boundaries of all 
inferred boundaries is about 40%, 42% overall. This suggests that the LCh segmentation 
mechanism, as compared with former findings (e.g. Drienkó 2017, 2018a), is only moderately 
robust when words are the basic units for segmentation and utterance boundaries are to be 
inferred. Nevertheless, the other precision parameters reveal significant features of the LCh 
strategy that condition the emergence of useable word combinations for syntactic processing. 
First of all, the distance of an erroneously inferred boundary is, on average, merely 1.144 
words (5.605 characters) from the nearest correct utterance boundary, i.e. by shifting the 
erroneous boundary ca. one word to the left or to the right we reach a correct utterance 
boundary. Secondly, Alignment Precision is relatively high. The 75.7% average value indicates 
that about three quarters of the original utterance boundaries are correctly identified. Perhaps 
most importantly, the relatively high AP value is achieved via inserting extra boundaries. 
These additional boundaries are incorrect with respect to utterance edges. However, they 
mark out reoccurring word sequences that can be used as building blocks for utterances. The 
1.765 average Redundancy value shows that roughly twice as many boundaries are inferred as 
would be strictly necessary to identify the original utterances.  

The coverage results of our experiments, averaging 84.6%, are fairly impressive, especially 
when compared to the relatively low IP values. The fact that, on average, over 80% of an 
utterance can be covered by fragments output by the LCh module of the processing system 
indicates that LCh segmentation may be a promising mechanism for providing useful word 
combinations, or “phrases”, i.e. building blocks for syntactic processing. In fact, the 84.6% 
average value is higher than our previous result, 78%, obtained with the 2-5-word-long 
utterances in the training corpus (Drienkó 2013b), which indicates that LChs provide a 
comparable, or even better basis for AG processing. The high coverage value also suggests that 
the formation of groups, AGs in particular, can be a successful strategy for creating a syntactic 
mapping apparatus. Thus, our results would be in line with a usage-based model of the 
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emergence of linguistic capacities supported by two fundamental cognitive strategies – LCh 
segmentation and the formation of AGs.  

Compared with the Le Petit Prince experiment in Drienkó (2020b), the data here suggest 
higher boundary precision and higher coverage: 42% and 85%, respectively, versus 16% and 
45% in the former experiments. Cf. Table 7. Thus, besides drawing attention to largest-
chunking and AGs, our findings also highlight the role of mother-child language in 
facilitating linguistic processing. 

Table 7: Comparison of the results with those from the Le Petit Prince experiment 

 

Le Petit Prince 
The Little Prince 

Kis herceg 
 

Average 

Anne 
 
 

Average 

Avr. IP 0.16 0.420 

Avr. R 5.6 1.765 

Avr. AP 0.9 0.757 

Avr. BV 17.02 5.605 

Avr. BVwo – 1.144 

Avr. cov. (cont.) 0.45 0.846 

Avr. cov. (discont.) 0.54 – 

4. Conclusions 

The primary objective of the present paper was to explore the viability of combining word-
based LCh segmentation with AG processing. We reported empirical results from experiments 
with CHILDES mother-child data. It was found that word-based segmentation is not robust for 
inferring utterance boundaries, IP is around 40%. Nevertheless, the majority of utterance 
boundaries can be found, AP ≈ 76%, via inserting redundant boundaries, R ≈ 1.76. The 
resultant wealth of segments conditions the emergence of utterance components, or building 
blocks, that can be organised into AGs. Thus LCh segments prove to be useable word 
combinations for linguistic processing. As reflected in the coverage values, such building 
blocks can account for, on average, some 80% of the test utterances, which makes our approach 
a promising processing framework. Thus, the ‘LCh+AG’ approach can be regarded as a usage-
based model of the emergence of linguistic capacities based on two fundamental cognitive 
strategies, LCh segmentation and AG formation. As the present results are quantitatively 
superior to previous findings from literary texts, besides drawing attention to largest-chunking 
and AGs, our findings also highlight the role of mother-child language in facilitating linguistic 
processing. In the experiments only non-discontinuous fragments were allowed for AG 
coverage. Previous research (Drienkó 2015, 2020b) suggests that discontinuous fragments 
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improve coverage results. Consequently, the 84.6% average coverage value that we report here 
might have been higher if discontinuous fragments had also been considered. 
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